HWASEUNG Corporation CONVEYOR BELT

HWASEUNG Corporation **History**

1978. 09 (주)동양화공 설립

1988. 02 상호변경 : (주)동양화공 → (주)화승화학

1990. 06 컨베이어 벨트 생산 시작

1996. 01 (주) 화승소재 설립(CMB생산)

1998. 12 QS 9000 인증획득(한국 품질인증센터)

2003. 02 ISO14000 인증획득(한국표준 협회)

2004. 11 신노사 문화 우수기업 선정 - 노동부

2006. 05 HSMJ ST-CORD 컨베이어벨트 라인 설치

2007. 04 (주)화승엑스윌 설립

2008. 11 HSMJ R&D 센터 설립(중국)

2014. 01 중국 HSMJ 증설

HWASEUNG Corporation
Business Area

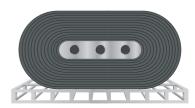
FENDER & MARINE SYSTEM 고무완충제 고무라이닝 Expansion-Joint 슬리브호스 고무씰 기타

범포 컨베이어 벨트

Cover Rubber Thickness

조건		중간 내마모성	내마모성	높은 내마모성	최고 내마모성		
운발물 종류		정제 석탄, 나무조각, 재, 시멘트 등	모래, 석탄, 진흙, 소금 등	석회석, 파쇄 석재, 코크스 등	광물, 화성암재, 유리 부스러기 등		
두께 크기	inch	0 ~ 2 (0~50mm)	2 ~ 6 (50~150mm)	6 ~ 10 (150~250mm)	8 ~ 12 (200~300mm)		
0~20	inch	1/16 ~ 1/8 (1.5~3.0mm)	1/8 ~ 3/16 (3.0~5.0mm)	3/16 ~ 1/4 (5.0~6.0mm)	1/4 ~ 5/16 (6.0~8.0mm)		
20~60	inch	1/16 ~3/32 (1.5~2.5mm)	1/8 ~ 3/16 (3.0~5.0mm)	3/16 ~ 1/4 (5.0~6.0mm)	1/4 ~ 5/16 (6.0~8.0mm)		
60~300	inch	1/16 ~ 1/32 (1.5~0.8mm)	1/8 ~ 3/32 (1.5~2.5mm)	1/8 ~ 3/16 (3.0~5.0mm)	3/16 ~ 1/4 (5.0~6.0mm)		

범포 컨베이어벨트 최대 CAPA


- 폭 : Max. 2,600mm - 무게: Max. 30 tons - 길이 : 고객 협의

Packing Type

카세트 포장 스틸릴 포장

스틸파렛트 포장

이클립스(Eclipse) 포장

범포 컨베이어 벨트

범포의 특징

심체에 나일론 섬유를 사용한 벨트는 충격과 손상에 대한 최대의 저항성이 제공되어 다양한 재료의 운반에 적합하다. 다양한 강력의 NN/EP범포를 사용하여 다양한 용도 및 적재 조건에 따라 선택 할 수 있다.

나일론 섬유(NN)

특징

- 운반물에 의한 충격 및 충돌에 대한 저항성이 특별히 강함

Grade	NN100	NN120	NN150	NN200	NN250	NN300	NN350	NN400	NN500	
최소 강력	kg/cm-ply	100	120	150	200	250	300	350	400	500
	lb/in-ply	560	672	840	1,120	1,400	1,680	1,960	2,240	2,800
사용 강력	kg/cm-ply	8.4	10.0	12.5	16.7	20.8	25.0	29.2	33.3	41.7
	lb/in-ply	46.7	56.0	70.0	93.3	116.7	140.0	163.3	186.7	233.3
Ply당 두께(고무)	mm	0.9	1.2	1.3	1.5	1.6	1.8	2.0	2.2	2.7
	inch	0.035	0.047	0.051	0.059	0.063	0.071	0.079	0.087	0.106

폴리에스터 섬유(EP)

경사에 폴리에스터를, 위에 나일론을 결합하여 보다 낮은 신장성과 높은 충격 저항성을 제공한다.

특징

- 저신장율

Grade	EP100	EP125	EP150	EP200	EP250	EP300	EP350	EP400	EP500	
최소 강력	kg/cm-ply	100	125	150	200	250	300	350	400	500
제고 영국	lb/in-ply	560	700	850	1,120	1,400	1,680	2,000	2,240	2,800
110 7121	kg/cm-ply	10.0	12.5	15.0	20.0	25.0	30.0	35.0	40.0	50.0
사용 강력	lb/in-ply	56.0	70.0	84.0	112.0	140.0	168.0	200.0	224.0	280.0
Ply당 두께(고무)	mm	0.9	1.2	1.4	1.5	1.9	2.0	2.1	2.4	3.2
	inch	0.035	0.047	0.055	0.059	0.075	0.079	0.083	0.094	0.126

Carcass Grade (EP & NN)

Grade	160	200	250	315	400	500	630	800	1000	1250	1600	2000
2ply	160/2	200/2	250/2	315/2	400/2							
3ply			250/3	315/3	400/3	500/3	630/3	800/3	1000/3	1250/3		
4ply					400/4	500/4	630/4	800/4	1000/4	1250/4	1600/4	
5ply						500/5	630/5	800/5	1000/5	1250/5	1600/5	2000/5
6ply							630/6	800/6	1000/6	1250/6	1600/6	2000/6

범포 컨베이어 벨트

범포 컨베이어 벨트 종류

일반 & 내마모성 컨베이어 벨트

심체에 나일론 섬유를 사용한 벨트는 충격과 손상에 대한 최대 저항성이 제공되어 다양한 재료(광 물, 파쇄 석재, 곡물, 모래 등)의 운반에 적합하다. 다양한 사양의 NN/EP 벨트지를 사용하여 적재 조건에 따라 선택할 수 있다.

난연성 컨베이어 벨트

난연성 컨베이어 벨트는 난연성 재료사용, 특수한 배합을 사용함으로써 화재의 경우에 자가 소화 기능을 가지고 있다. 화승엑스윌 컨베이어 벨트는 MSHA, SABS, DIN, AS 등 다수의 규정에 적합한 난연성능을 갖는 카바고무를 제공한다

내열성 컨베이어 벨트

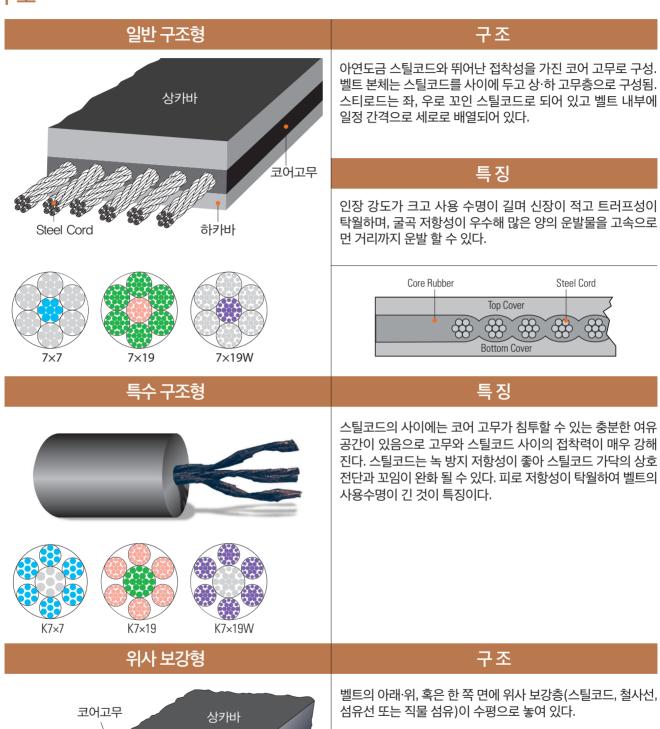
화승코퍼레이션 내열성 컨베이어 벨트는 고온의 고열광석, 펠렛, 클링커, 뜨거운 화학물질, 비료 및 시 멘트 등의 운반조건에 적합하다.

내유성 및 내유/내열성 컨베이어 벨트

내유성, 내열/내유성 컨베이어 벨트의 카바고무는 내유성을 요구하는 사용처에 맞게 설계되었다. 본 제품은 뛰어난 마모, 오전, 내후성을 가지고 있고 이컨베이어벨트는 기름으로 인한 팽창을 유발 하는 컨베이어 라인에 권장된다.

내인열 컨베이어벨트

채석장용 벨트에 특별히 사용되는 Crows Foot Weave 범포는 평직 표준범포에 비해 최대 5배의 찢어짐 방지 능력을 가진다. 효율성 90% 이상까지 이르는 매우 탁월한 금구접합력을 가진다.



파이프 컨베이어 벨트

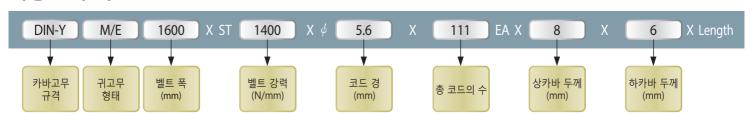
화승코퍼레이션 파이프 컨베이어 벨트는 운발물의 굴곡피로와 내마모성 및 뛰어난 Ply 접합에 적합하도록 설계 되었다.

틸코드 컨베이어 벨트

구조

코어고무 Steel Cor 하카바 횡단 강화물

특징


충격 저항성이 좋고 외부 힘에 의해 찢어지는 것을 줄여주는 탁월한 특성이 있다. 벨트 수명이 길어지고 인열에 대한 저항성이 크며 스틸코드를 보호한다.

스틸코드 컨베이어 벨트

스틸코드 컨베이어 벨트 Spec

В	elt type	ST 500	ST 630	ST 800	ST 1000	ST 1250	ST 1400	ST 1600	ST 1800	ST 2000	ST 2250	ST 2500	ST 2800	ST 3150	ST 3500	ST 4000	ST 4500	ST 5000	ST 5400
Tensile strength(N/mm)		500	630	800	1000	1250	1400	1600	1800	2000	2250	2500	2800	3150	3500	4000	4500	5000	5400
Max. Dia	a. of Cord(mm)	2.8	3	3.5	4	4.5	4.5	5	5	6	6.3	7.2	7.6	8.1	8.6	9.2	10.1	10.6	11.5
	aking Strength d(KN/Cord)	5.6	7	8.9	13.2	16.5	18.5	21.1	23.7	26.4	29.6	41.7	46.7	52.5	58.4	66.7	80.4	89.3	103.9
Weight	of Cord(g/m)	30.7	34.7	47.8	64	79.8	79.8	97.3	97.3	137	155	196	221	253	280	316	385	414	496
Pir	tch(mm)	10	10	10	12	12	12	12	12	12	12	15	15	15	15	15	16	16	17
	rking Strength elt(N/mm)	72	90	115	145	180	200	230	260	290	320	360	400	450	500	580	640	720	770
	hickness of ver(mm)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	5.0	5.0	5.0	5.5	5.5	6.0	6.5	7.0	7.5	8.0
Min.	Head & Drive	600	600	650	750	850	950	1000	1200	1200	1400	1500	1550	1700	1800	1850	2000	2100	2400
Pulley Diameter	Tail & Take-up	500	500	500	550	700	750	800	950	950	1200	1200	1250	1350	1400	1400	1600	1700	1900
(mm)	Bend & Snubs	350	350	400	450	500	510	600	700	700	800	900	950	1000	1050	1050	1200	1250	1400
Belt '	Width(mm)								No	o. of ste	eel cor	ds							
5	00 ± 5.0	45	45	45	38	38	38	38	-	-	-	-	-	-	-	-	-	-	
6	50 ± 6.5	60	60	60	50	50	50	50	50	50	50	40	40	40	40	40	37	37	35
7	50 ± 7.5	70	70	70	59	59	59	59	59	59	59	47	47	47	47	47	44	44	41
8	00 ± 8.0	75	75	75	63	63	63	63	63	63	63	50	50	50	50	50	47	47	44
9	00 ± 9.0	85	85	85	71	71	71	7	71	71	71	57	57	57	57	57	53	53	50
10	00 ±10.0	95	95	95	79	79	79	79	79	79	79	64	64	64	64	64	59	59	56
10	50 ±10.5	98	98	98	82	82	82	82	82	82	82	66	66	66	66	66	62	62	58
12	00 ±12.0	113	113	113	94	94	94	94	94	94	94	76	76	76	76	76	71	71	67
14	00 ±14.0	133	133	133	111	111	111	111	111	111	111	89	89	89	89	89	83	83	78
15	00 ±15.0	141	141	141	118	118	118	118	118	118	118	94	94	94	94	94	89	89	93
16	00 ±16.0	151	151	151	126	126	126	126	126	126	126	101	101	101	101	101	95	95	89
18	00 ±18.0	171	171	171	143	143	143	143	143	143	143	114	114	114	114	114	107	107	101
20	00 ±20.0	-	-	-	159	159	159	159	159	159	159	128	128	128	128	128	120	120	113
22	00 ±22.0	-	-	-	176	176	176	176	176	176	176	141	141	141	141	141	132	132	125

사양표기 예

www.hscorp.com

본 사 부산광역시 연제구 연산5동 1287-21 장천 B/D 9층 Tel. 051-717-7300 서울사무소 경기도 김포시 월곶면 군하리 341-17 Tel. 031-981-2093